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Ab". Using supersymmetry transformations we have oonstructed closed form 
expressions for the phase-equivalent partners (PEP) of the M o n e  and Hulthh potentials 
and discussed some of their characteristic features in terms of a model calculation. We 
have found that (i) there is no Efimov effect for the PEP of the Morse potential and this 
results from the effect of elimination of the bound state of the parent potential, and (ii) 
the PEP of the Hulthtn potential may have some interesting application in electron-ion 
scattering. 

While mourning his unfortunate demise we dedicate this article to the memory of the 
late Kalyan Roy of Chandidas Mahavidyalaya, Burdwan, who worked with our group 
for more than three years. 

1. Introduction 

About 50 years ago Bargmann [ l ]  discovered a manifold of potentials V ( r )  which 
have the same spectral density for positive energies as a given potential Vo(r).  Each 

of bound states [2,3]. Bargmann's discovery has initiated more general studies in the 
so-called inverse scattering problem (ISP) with a view to establishing a causal connection 
underlying the relationship between scattering data and potentials. The inverse problem 
was attacked mainly by three groups [4-61 working more or less independently of each 
other. The solution found by Gel'fand and Levitan [4] appears to be more complete 
and mathematically more rigorous compared to the other two [S, 61. The algorithms 
of the ISP can also be used to generate phase-equivalent potentials (PEP) [2]. 

In the recent past the Gel'fand-Levitan procedure has been revisited and re- 
examined by Sukumar [7] within the framework of supersymmetric quantum mechanics 
(SSQM) [8]. This fundamental observation has been followed by a number of important 
works. For example, Baye 191 has applied the SSQM to the determination of shallow 

ingly, deep and shallow nature of nucleus-nucleus potential was a controversial 
question for a long time [lo]. Baye's method or equivalently that of Sukumar was 
applied by Amado [ 111 to the partial wave Coulomb problem to obtain a new potential 
which is phase-equivalent to the Coulomb potential. As opposed to the treatment of 
Baye, Amado's approach to the problem is analytic and helps one illuminate the role 
of SSQM to obtain a family of phase-equivalent potentials. More recently, Khare and 
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Sukhatme [12] have sought some generalization of the work of Amado to derive a 
parametric relationship among a number of previously studied potentials [3,13, 141. 

In this work we shall deal with (i) Morse and (ii) Hulthtn potentials. Both these 
potentials have played a central role in nuclear, atomic and molecular physics. For 
example, the soft-core Morse potential can well account for ' S ,  and 'So nucleon-nucleon 
scattering phaseshifts. The vibrations of a class of diatomic molecules can also be 
excellently described by the Morse function. On the other hand, the HulthCn potential 
serves as a modei for the interaction between nucieons in deuteron. Ais0 it can be 
regarded as a screened Coulomb potential. Here we work within the framework of 
SSQM, develop an analytical approach to construct phase-equivalent partners for the 
potentials in (i) and (ii) and try to gain some physical weight for the problem in the 
context of few-body dynamics by comparing appropriate numerical results. In section 
2 we introduce the mathematical framework of the SSQM. Given any central potential, 
the results presented are directly applicable to calculate a phase-equivalent potential 
with one less bound state. These formulae can, however, be used iteratively to generate 
families of such potentials that have 2, 3 . . . less bound states. In section 3 we treat 
the Morse and Hulthtn potentials to obtain results for PEPS with one less bound state. 
We recast all results in 'maximal' reduced form for straightforward numerical calcula- 
tion. For illustrative purposes, we present plots of the PEPS together with the parent 

SSQM simulates elimination of hound states and generation of PEPS, and, on the other 
hand, provide an intuitive feeling for typical few-body phenomena [I51 which depend 
only on features of the physical scattering or on-shell properties of the potential. 

poieniiais. Tnese piuis, on ihe one .nand, ciarify the 'Dasic mechanism ihrough which 
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In supersymmetric quantum mechanics the lth partial wave radical Schrodinger Hamil- 
tonian can be written in the factored form 

( 1 )  
1 d2 
2 dr2 

Ho= -- -+ V,(r) = ATA; + E F )  

where Eio'<O is the binding energy of the lowest bound state of Ho such that 

Ho+io'(r) = Eio '@' ( r ) .  (2) 

Clearly, the energy E r '  is the factorization energy of the Schrodinger operator Ha 
[16, 171. The superscript (0) on J, stands for the ground state wavefunction while the 
...L.-L-.fi ,_:_.I: _^.__. L^..L '- .._^. :-.. . , . ( O J , . , L - ,  -..--.- U -^_..-"---A..' a"oaL-,lpr" rnr,e,y III",c*lrs ,,La, Lne wa"rlll"L-LIuII ,+lo, ( '1  vrrurrgs ,U n o .  l u G s u p c l J n . p r  

and subscript on E have similar meaning. We shall use analogous notations for the 
partner potentials. Here we work in units in which h = m = 1. The potential Vo(r) 
includes the centrifugal barrier and is given by 

The potential Vo(r) is assumed to be regular in the usual sense [18]. The operators 
A; are given by 

(4) 
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In terms of bound state wavefunction the 'superpotential' WO is written as 

( 5 )  
d 

O-dr 
w - - In & ' ( E ~ ~ I ,  r ) .  

The Hamiltonian Ho has a supersymmetric partner HI given by [7] 

( 6 )  

It shares the same spectrum as Ho except the ground state Eho) of Ha.  The Hamiltonian 
H ,  corresponds to a potential 

d 
d r  

H - A-A+ + ~ ( 0 )  - 
1 -  o o o - H o + - W o .  

In writing (7) we have used ($- r"' for small r and removed the singularity at r = 0. 
When supersymmetry is unbroken the eigenvalues and eigenstates of H, and Ha obey 
the mapping 

1 @ a )  

(86 )  

E ( - ) =  E(,"+l) 
0 

and 

$$+(E\m), r )  = (Eh,"+L'- E ~ O ) ) - l / 2 A o # , b ~ + l ~ ( E ~ m + 1 )  , I) m = 0,1,2 . . . . 
The relations in (8) refer to excited bound states. For positive energies E =fk2 
( k  = on-shell momentum) the eigenfunction relation of (86) can be generalized [7,19] 
to read 

(9) 

The result for V,(r) looks like a non-singular potential with angular momentum 
/ +  1. Since the supersymmetry relation is concerned only with the radial Schrodinger 
equation for some fixed value of 1, the correct interpretation of (7) is that the potential 
V,(r) is singular at the origin [9], and this singularity arises from the term ( l + l ) x  
(/+2)/rz.  From (3) and (7). it is clear that the potentials V,(r) and V,(r) have identical 
asymptotic behaviour. Despite this, they are not phase-equivalent. This can easily be 
seen by using the asymptotic form of (9) [7,9]. To construct a PEP for Va(r) one 
proceeds by introducing a supersymmetric partner H2 of H ,  with E r ' a s  separation/fac- 
torization energy. The energy E?' lies below the ground state energy of H,. The 
Hamiltonian H2 can be generated in terms of regular solutions of the Schrodinger 
equation 

#,,(E, r )  = ( E  -Eho) ) -1 '2A;~of (E ,  r ) .  

Hl#,f(ELa), r ) = E r ) + , l ( E r ) ,  r). (10) 
The wavefunction $ J , ~ ( E ~ ' ) ,  r )  is not square integrable, but can be chosen regular at 
r = 0 as follows. 

A particular solution of (10) is [#.by'(Eho), r)]-' for which we can write the super- 
potential as  

The Riccati form of (10) is given by 

w2+ w'= 2( v,( r) - EL'') 
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where 

d 
d r  

W = - h  $,l(E$‘’, r). 

To construct a regular solution of (10). we shall make use of the solution of (12). A 
general solution of (12) can be written in the form 

W =  +++. (14) 

From (12) and (14) we have 

+‘+2+rir+ $ 2  = 0. (15) 

In (12) and (15) prime denotes differentiation with respect to r. The Bernoulli-type 
equation in (15) can be reduced to a linear one by using the transformation 

+=y‘ (16) 

to get 

y’ + 2 riry = 1. (17) 

From (16) and (17) 

In writing (le), we have focused our attention on those  PEP^ which have one less bound 
state and disregarded other possibilities considered by Khare and Sukhatme [12]. 
Combining ( l l ) ,  (14) and (18) we have 

the desired regular solution of (10). In terms of the result in (19), the phase-equivalent 
supersymmetric partner H2 of the Hamiltonian H, can be written as 

(20) 
1 d2 
2 drZ 

H2 = A;A:+ Eho’= -- -+ Vz(r) 

with 

From (20) and (21). the PEP V,(r) of V,(r) is 

The potentials V,(r) and Vz(r) share exactly the same bound state spectrum. This 
implies that V,(r) has all the same bound states as Vo(r) except for the lowest. Thus 
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for any given energy E, the solutions of the Hamiltonians H 2 ,  H ,  and Ho are related 
by 

From (41, (S), (21) and (236), we have 

Since 
demonstrates the phase-equivalence of V,( r )  and Vo(r).  

r )  is square integrable, the function , . ) + #ol(. , ) as r + 00. This 

3. PEPS for the Morse and HulthCn potentials 

Some useful applications of the results presented in section 2 are now in order. With 
this in mind, we apply them to construct phase-equivalent potentials corresponding 
to the Morse and Hulthin potentials. For both these potentials the Schrodinger equation 
can be solved analytically only for I = 0. We shall, therefore, be interested in the s-wave 
case and present all results in analytic form. The inevitable numerical routine will be 
invoked only at a latter stage of the game. Henceforth we shall omit the subscript I=0 .  

3.1. Morse potential 

The Morse potential is given by 
v,"(~)= ~ ~ 2 l ' , ~ ' l / d - * ~ ~ l ' ~ - ' ) / d  

It has a minimum -D at r = r, . The parameter d is a measure of the range of the 
potential. It supports a finite number of bound states (say N )  with energy eigenvalues 

In (26) a, = d m  and N is the largest integer less than (a,+$). The unnormalized 
ground state eigenfunction of V,"(r) is 

I (27) 
I,b~(o)(E~M(o), = e-lo,-j)r/d exp[-n, e(r,-rl/d 

with energy eigenvalue 

If we take EY"" as the factorization energy of H Y ,  the partner potential V ? ( r )  of 
V,"(r) can be obtained in the form 
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In writing (29), we have made use of 

To construct the expression for V,"(r) we have first obtained the regular solution of 

(31) H y $ y ( E r " ' ,  r )  = E y ' " $ Y ( E ~ ' ' " ,  r) 

in the form 

K"(E,M'", r) 

where ,Fl( . )  stands for the regular confluent hypergeometric function. In terms of the 
wavefunction in (32) the operators AY* corresponding to those in (21) are given by 

1 d d  
d d r  d r  

Ay*=- (  *-+-In $ Y ( E r " ) ,  r)). (33) 

From (22) and (33) we find the result for V," in the form 

V,"(r)= V,M(r)-ZM(r) '1-'''~-2 (y'j - - z M ( r )  3 (34) d 

where 

exp -2 a,-- - exp[-2u,e('1-''/~] 

2u,+ n - 1 
d 

(35) 
[ ( XI 

( r , F ,  1 ; 2 ; -  
z M ( r ) =  

(-2a,)" en'Jd 
n! E 

"=O 

For the values of the parameters D = 109.61 MeV, r, = 0.8531 fm and d = 0.3584 fm 
the potential in (25) can reproduce the phaseshifts for 'SI nucleon-nucleon scattering 
up to a laboratory energy of 300 MeV and supports only one bound state at 2.218 MeV 
[20]. This is the deuteron binding energy. Compared to the depth of the potential this 
bound state energy is very small. Thus, if this potential is used as a painvise interaction 
to study the three-body bound states, one expects to come across the so-called Efimov 
effect [15]. It is important to note that the Efimov effect is a characteristic of the 
on-shell properties of the potential and is independent of its details. Reasonably, one 
would like to know whether this typical three-body effect will also be observed when 
we try to employ the phase-equivalent potential Vz(r) in place of Vo(r). This question 
has recently been beautifully expounded by Amado et ol [21]. We shall shortly come 
to this point. Meanwhile, we present in figure 1 the plots of the reduced potentials 
corresponding to V,"(r), VY(r) and Vy(r )  as a function of r. We represent the 
variation of (m/h2) V r ( r )  and its phase-equivalent partner (m/hz)V,"(r) by solid 
lines. We have used a dashed line to show similar variation of the auxiliary potential 
(m/fi2)Vy(r). The auxiliary potential just misses the ground state and becomes 
coincident with (m/ii2)Vy(r) at and after 3.2fm. Inspite of this, (m/hZ)VF(r) and 
(m/h2) Vy(r)  are phase inequivalent. The phase-equivalent potential ( m / h 2 )  V?(r) 
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I I I I I I 

r (fm) 
I'O 20 30 C O  5.0 

Figure 1. The Morse potential and its phase-equivalent partner as a function of r in units 
of fi2/m(=82.94 MeVfm'), m being the nucleon mass. 

is far more singular at small r and heals less rapidly to ( m / h * ) V f ( r ) .  This represents 
the typicai characteristics of hrsey-type poientiais j i i ,  i3j. Tine singuiarity siruciure 
of the phase-equivalent potential can explicitly be shown by careful analysis of (7) 
and (22) and plays a role in the studies of scattering with Pauli-blocked bound states 
in compound systems [22]. 

Equation (24) demonstrates phase-equivalence of V,( r )  and V2(r )  in the wavefunc- 
tion level. The phase-equivalence, however, holds good even in the Green function 
ICVC'L LLI,. 111 L'lC yLsSc", GUIIICr.L w c  ll*"C "CiILIC" UIC rurruwlllg. 

(i) The interacting outgoing wave Green function GFlM(k, r, r') and G$+IM( k, r, r') 
for Morse potential and its phase-equivalent partner are asymptotically equal. 

(ii) The Green function Gb''M(k, r, r ' )  tends to trigger the Efimov divergence when 
used for calculating the three-body integral kernel of a bound state problem. 

(iii) No Efimov effect is observed for the function GF'M(k, r, r') of the phase- 

The observations in (ii) and (iii) constitute a direct verification for the caution to 

I I r e * ,  1- .l.- __^_^_  * ---.-..I L ..-LC-> .L^ 2-13 :-- 

nn..:.,"l--t -,.nm"t:.l 
-y...,Y.c,rb pYLC.."Y.. 

be followed in embedding the two-body dynamics in a many-body system [21]. 

3.2. HuIthJn potential 

The two-parameter Hulthin potential (V, and a) is given by 

In the limit a + m ,  the potential in (36) goes over to the Coulomb potential if 
Voa2 = e2 = 1 (in atomic units). As noted earlier the Schrodinger equation for the 
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HulthCn potential can be solved only for I = 0. The ground state wavefunction and 
energy eigenvalue for the HulthCn potential is given by 

with 

p 2 = 2 V o a 2 >  0. 

Because of (39), (36) can be written as 
(39) 

We shall use this form of V,"(r) in all our subsequent discussion. The auxiliary potential 
corresponding to V,"(r) is given by 

The regular solution of interest for V p ( r )  is obtained as 

Using the wavefunction in (42) we have obtained the PEP, V?(r) ,  of V,"(r) in the form 

where 
3 e-2~i13- l l12a) r  

zH( r) =- (44) a (l-e-'/') ,F,(3,  1-2a((p2-1)/2a);4; l-e-'/'')' 

In (44) 2Fl(.) stands for the Gaussian hypergeometric function. 
The phase-equivalent partner V:( r )  forthe Coulomb potential V,'( r )  can be written 

in terms of incomplete gamma function y ( a ,  x )  [12 ] .  The function y ( a ,  x )  is related 
to the confluent hypergeometric function (lFl( .)) by 

y ( a , x ) = a - ' x Y , F , ( a ;  a + ] ;  - x ) .  (45) 
Taking notice of this and using the limits a +OO and ( p 2 -  1)/2a+ 1 together with the 
transformation formula 

we have obtained the result for V:(r )  from our expression for V r ( r ) .  Admittedly, 
our derived result refers only to the s-wave case. 

In figure 2 we portray the variation of V r ( r ) ,  V p ( r )  and V?(r )  as a function of 
r for a = 50 au. These curves are drawn by solid lines. In this figure we display the 
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Figure 2. The HulthCn potential and its phase-equivalent partner as a funnion of I in au. 

corresponding results for the Coulomb potential by dashed curves. Looking closely 
into these curves we see that the s g n ( V z ( r ) -  V ," ( r ) )=sgn(VF(r ) -  V r ( r ) )  for all r 
but sgn( V:( r )  - V?( r ) )  = sgn( V,"(r) - V,"( r ) )  only after r = 2.2 au. For small r region, 
sgn(V:(r)- Vp(r))= -sgn(V,"(r)- V,"(r)). We have checked that this property is 
repeated if we iterate the supersymmetric procedure to construct higher order auxiliary 
and phase-equivalent potentials. Thus the curves in figure 2 help one visualize the 
points of contrast and similarity between the HulthCn and Coulomb potentials when 
treated within the framework of SSQM. The result of this section may be of some interest 
to atomic physicists since the interaction between an electron and Lit ion is a screened 
Coulomb force with the 1s state occupied. 
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